翻訳と辞書
Words near each other
・ Hyperekplexia
・ Hyperelastic material
・ Hyperelliptic curve
・ Hyperelliptic curve cryptography
・ Hyperelliptic surface
・ Hyperemesis gravidarum
・ Hyperenor
・ Hypereosinophilia
・ Hypereosinophilic syndrome
・ Hyperepia
・ Hyperes
・ Hyperesthesia
・ Hyperestrogenism
・ Hyperetes
・ Hyperetis
Hypereutectic piston
・ Hyperexponential distribution
・ Hyperextension (exercise)
・ Hyperfibrinolysis
・ Hyperfine structure
・ Hyperfinite
・ Hyperfinite set
・ Hyperfinite type II factor
・ Hyperflex
・ Hyperfocal distance
・ Hyperfocus
・ HyperFont
・ Hyperforeignism
・ Hyperforin
・ Hyperfrontia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hypereutectic piston : ウィキペディア英語版
Hypereutectic piston

A hypereutectic piston is an internal combustion engine piston cast using a hypereutectic alloy–that is, a metallic alloy which has a composition beyond the eutectic point. Hypereutectic pistons are made of an aluminum alloy which has much more silicon present than is soluble in aluminum at the operating temperature. Hypereutectic aluminum has a lower coefficient of thermal expansion, which allows engine designers to specify much tighter tolerances.
The most common material used for automotive pistons is aluminum due to its light weight, low cost, and acceptable strength. Although other elements may be present in smaller amounts, the alloying element of concern in aluminum for pistons is silicon. The point at which silicon is fully and exactly soluble in aluminum at operating temperatures is around 12%. Either more or less silicon than this will result in two separate phases in the solidified crystal structure of the metal. This is very common. When significantly more silicon is added to the aluminum than 12%, the properties of the aluminum change in a way that is useful for the purposes of pistons for combustion engines. However, at a blend of 25% silicon there is a significant reduction of strength in the metal, so hypereutectic pistons commonly use a level of silicon between 16% and 19%. Special moulds, casting, and cooling techniques are required to obtain uniformly dispersed silicon particles throughout the piston material.
Hypereutectic pistons are stronger than more common cast aluminum pistons and used in many high performance applications. They are not as strong as forged pistons, but are much lower cost due to being cast.
==Advantages==
Most automotive engines use aluminum pistons that move in an iron cylinder. The average temperature of a piston crown in a gasoline engine during normal operation is typically about , and the coolant that runs through the engine block is usually regulated at approximately . Aluminum expands more than iron at this temperature range, so for the piston to fit the cylinder properly when at a normal operating temperature, the piston must have a loose fit when cold.

In the 1970s, increasing concern over exhaust pollution caused the U.S. government to form the Environmental Protection Agency (EPA), which began writing and enforcing rules that required automobile manufacturers to introduce changes that made their engines run cleaner. By the late 1980s, automobile exhaust pollution had been noticeably improved, but more stringent regulations forced car manufacturers to adopt the use of electronically controlled fuel injection and hypereutectic pistons. Regarding pistons, it was discovered that when an engine was cold during start-up, a small amount of fuel became trapped between the piston rings. As the engine warmed up, the piston expanded and expelled this small amount of fuel which added to the amount of unburnt hydrocarbons in the exhaust.
By adding silicon to the piston's alloy, the piston expansion was dramatically reduced. This allowed engineers to specify a much tighter cold-play between the piston and the cylinder liner. Silicon itself expands less than aluminum, but it also acts as an insulator to prevent the aluminum from absorbing as much of the operational heat as it otherwise would. Another benefit of adding silicon is that the piston becomes harder and is less susceptible to scuffing which can occur when a soft aluminum piston is cold-revved in a relatively dry cylinder on start-up or during abnormally high operating temperatures.
The biggest drawback of adding silicon to pistons is that the piston becomes more brittle as the ratio of silicon to aluminum is increased. This makes the piston more susceptible to cracking if the engine experiences pre-ignition or detonation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hypereutectic piston」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.